Issue 5, 2021

Non-equilibrium growth and twist of cross-linked collagen fibrils

Abstract

The lysyl oxidase (LOX) enzyme that catalyses cross-link formation during the assembly of collagen fibrils in vivo is too large to diffuse within assembled fibrils, and so is incompatible with a fully equilibrium mechanism for fibril formation. We propose that enzymatic cross-links are formed at the fibril surface during the growth of collagen fibrils; as a consequence no significant reorientation of previously cross-linked collagen molecules occurs inside collagen fibrils during fibril growth in vivo. By imposing local equilibrium only at the fibril surface, we develop a coarse-grained quantitative model of in vivo fibril structure that incorporates a double-twist orientation of collagen molecules and a periodic D-band density modulation along the fibril axis. Radial growth is controlled by the concentration of available collagen molecules outside the fibril. In contrast with earlier equilibrium models of fibril structure, we find that all fibrils can exhibit a core–shell structure that is controlled only by the fibril radius. At small radii a core is developed with a linear double-twist structure as a function of radius. Within the core the double-twist structure is largely independent of the D-band. Within the shell at larger radii, the structure approaches a constant twist configuration that is strongly coupled with the D-band. We suggest a stable radius control mechanism that corneal fibrils can exploit near the edge of the linear core regime; while larger tendon fibrils use a cruder version of growth control that does not select a preferred radius.

Graphical abstract: Non-equilibrium growth and twist of cross-linked collagen fibrils

Article information

Article type
Paper
Submitted
14 Oct 2020
Accepted
30 Nov 2020
First published
08 Dec 2020

Soft Matter, 2021,17, 1415-1427

Non-equilibrium growth and twist of cross-linked collagen fibrils

M. P. Leighton, L. Kreplak and A. D. Rutenberg, Soft Matter, 2021, 17, 1415 DOI: 10.1039/D0SM01830A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements