Issue 9, 2021

Kinetics of self-assembly of inclusions due to lipid membrane thickness interactions

Abstract

Self-assembly of proteins on lipid membranes underlies many important processes in cell biology, such as, exo- and endo-cytosis, assembly of viruses, etc. An attractive force that can cause self-assembly is mediated by membrane thickness interactions between proteins. The free energy profile associated with this attractive force is a result of the overlap of thickness deformation fields around the proteins which can be calculated from the solution of a boundary value problem. Yet, the time scales over which two inclusions coalesce has not been explored, even though the evolution of particle concentrations on membranes has been modeled using phase-field approaches. In this paper we compute this time scale as a function of the initial distance between two inclusions by viewing their coalescence as a first passage time problem. The mean first passage time is computed using Langevin dynamics and a partial differential equation, and both methods are found to be in excellent agreement. Inclusions of three different shapes are studied and it is found that for two inclusions separated by about hundred nanometers the time to coalescence is hundreds of milliseconds irrespective of shape. An efficient computation of the interaction energy of inclusions is central to our work. We compute it using a finite difference technique and show that our results are in excellent agreement with those from a previously proposed semi-analytical method based on Fourier–Bessel series. The computational strategies described in this paper could potentially lead to efficient methods to explore the kinetics of self-assembly of proteins on lipid membranes.

Graphical abstract: Kinetics of self-assembly of inclusions due to lipid membrane thickness interactions

Article information

Article type
Paper
Submitted
30 Sep 2020
Accepted
19 Jan 2021
First published
20 Jan 2021

Soft Matter, 2021,17, 2539-2556

Kinetics of self-assembly of inclusions due to lipid membrane thickness interactions

X. Liao and P. K. Purohit, Soft Matter, 2021, 17, 2539 DOI: 10.1039/D0SM01752C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements