Issue 3, 2021

Role of soft-gel substrates on bouncing–merging transition in drop impact on a liquid film

Abstract

Liquid droplets impacting on liquid films is common in many industrial and natural processes. It is crucial to understand the impact of droplets on a liquid film resting on soft deformable substrates in some of the applications including 3D printing of engineering structures, prosthetic implants and tissue engineering. By recognizing the practical relevance of soft-substrates, we present an experimental investigation to assess the role of deformable substrates on bouncing-to-merging transition in droplet impact on the liquid film. First, we prepared polyacrylamide (PAAm) soft-gel substrates with various “softness” (i.e., Young's modulus) by modulating the concentration of a crosslinker, N,N-methylene-bis-acrylamide (BIS). We found that the Young's modulus of PAAm initially increases with the concentration of crosslinker, and subsequently becomes almost constant due to inhomogeneity of crosslinking. Next, through the experiments of droplet impact on the liquid film resting on soft substrates with different Young's moduli, we observe that the early merging and corresponding bouncing-to-merging transitional boundaries remain unaffected by the “softness” since such merging occurs further away from the substrate. However, the late merging, which appears during the retraction process of the deformed droplet, occurs relatively close to the substrate, and hence is found to be significantly affected by its “softness”. A scaling analysis is presented to quantify the role of change in Young's modulus of the substrate on late merging, which is supported by the experimental data.

Graphical abstract: Role of soft-gel substrates on bouncing–merging transition in drop impact on a liquid film

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2020
Accepted
02 Nov 2020
First published
02 Nov 2020

Soft Matter, 2021,17, 571-579

Role of soft-gel substrates on bouncing–merging transition in drop impact on a liquid film

S. Shin, M. Li, X. Wu, A. Saha and J. Bae, Soft Matter, 2021, 17, 571 DOI: 10.1039/D0SM01675F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements