Issue 9, 2021

Crystallization of semiflexible polymers in melts and solutions

Abstract

We studied the crystallization of semiflexible polymer chains in melts and poor-solvent solutions with different concentrations using dissipative particle dynamics (DPD) computer simulation techniques. We used the coarse-grained polymer model to reveal the general principles and microscopic scenario of crystallization in such systems at large time and length scales. It covers both primary and secondary nucleation as well as crystallites’ merging. The parameters of the DPD model were chosen appropriately to reproduce the entanglements of polymer chains. We started from an initial homogeneous disordered solution of Gaussian chains and observed the initial stages of crystallization process caused in our model by orientational ordering of polymer chains and polymer–solvent phase separation. We found that the overall crystalline fraction at the end of the crystallization process decreases with the increasing polymer volume fraction while the steady-state crystallization speed at later stages does not depend on the polymer volume fraction. The average crystallite size has a maximal value in the systems with a polymer volume fraction from 0.7 to 0.95. In our model, these polymer concentrations represent an optimal value in the sense of balance between the amount of polymer material available to increase the crystallite size and chain entanglements, that prevent crystallites’ growth and merging. On large time scales, our model allows us to observe lamellar thickening linear in logarithmic time scale.

Graphical abstract: Crystallization of semiflexible polymers in melts and solutions

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2020
Accepted
11 Dec 2020
First published
22 Jan 2021

Soft Matter, 2021,17, 2392-2403

Crystallization of semiflexible polymers in melts and solutions

P. I. Kos, V. A. Ivanov and A. V. Chertovich, Soft Matter, 2021, 17, 2392 DOI: 10.1039/D0SM01545H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements