Analytical model for drag reduction on liquid-infused structured non-wetting surfaces
Abstract
Liquid-infused structured non-wetting surfaces provide alternating no-slip and partial slip boundary conditions to the fluid flow, resulting in reduced friction at the interface. In this paper, an analytical model is developed for the evaluation of effective slip and, in turn, friction factor and drag reduction on liquid-infused structured non-wetting surfaces. By considering the entire range of anisotropy and heterogeneity of the surface structures as well as the full range of partial slip offered by the infusion liquid, the present model eliminates empirical fitting or correlations that are inherent in previous studies. Based on the effective slip length, drag reduction and skin friction coefficient values for Newtonian flow between two infinite parallel plates and flow in round tubes are presented. Extension of Moody charts for non-wetting surfaces and design maps of surface meso/micro/nano texturing for achieving desired drag reduction are presented for a broad range of engineering applications. The article further presents independent validation of the model across experimental and computational data from the literature and brings together several previous studies in a unified manner.