Issue 4, 2021

Lubrication dynamics of swollen silicones to limit long term fouling and microbial biofilms

Abstract

Bacterial contamination and biofilm formation on medical devices remain a costly and serious healthcare problem. Silicone (polydimethylsiloxane, PDMS) elastomers are common biomaterials but are susceptible to bacterial surface contamination and biofilm growth. ‘Self-lubricated’ PDMS elastomers (iPDMS) have the potential to greatly reduce rates of cell attachment, biofilm formation and infection. Cross-linked PDMS elastomers immersed in PDMS oil swell to an equilibrium concentration to form a swollen network, and then form a surface liquid layer through syneresis. Herein we have measured the swelling and syneresis kinetics as a function of time, viscosity (1.5 to 10 cSt), and cross-linking density to optimize the surface lubricant layer formation, and resistance to biofouling. The lubricant layer thickness was measured in situ (optical profilometry and AFM) for flat and micro-textured surfaces, as a function of time and swelling ratio, to be in a range from 0.1 to 1 μm, and continuously increases with time. We show this continuous generation is likely due to a gradual, dynamic re-structuring of the elastomer network. Long term antifouling properties of (10 cSt) iPDMS were tested for Pseudomonas aeruginosa growth in a flow culture bioreactor, and after 30 d showed a 103 to 104 reduction of bacterial cell density for iPDMS compared to conventional PDMS elastomers. This long term performance and non-specific activity makes them highly suitable for biomedical devices, such as urinary catheters.

Graphical abstract: Lubrication dynamics of swollen silicones to limit long term fouling and microbial biofilms

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2020
Accepted
26 Oct 2020
First published
07 Dec 2020

Soft Matter, 2021,17, 936-946

Lubrication dynamics of swollen silicones to limit long term fouling and microbial biofilms

N. Lavielle, D. Asker and B. D. Hatton, Soft Matter, 2021, 17, 936 DOI: 10.1039/D0SM01039A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements