Issue 32, 2021

Do carbon nanotubes catalyse bromine/bromide redox chemistry?

Abstract

The redox chemistries of both the bromide oxidation and bromine reduction reactions are studied at single multi-walled carbon nanotubes (MWCNTs) as a function of their electrical potential allowing inference of the electron transfer kinetics of the Br2/Br redox couple, widely used in batteries. The nanotubes are shown to be mildly catalytic compared to a glassy carbon surface but much less as inferred from conventional voltammetry on porous ensembles of MWCNTs where the mixed transport regime masks the true catalytic response.

Graphical abstract: Do carbon nanotubes catalyse bromine/bromide redox chemistry?

Supplementary files

Article information

Article type
Edge Article
Submitted
03 May 2021
Accepted
13 Jul 2021
First published
13 Jul 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 10878-10882

Do carbon nanotubes catalyse bromine/bromide redox chemistry?

A. Kaliyaraj Selva Kumar, R. Miao, D. Li and R. G. Compton, Chem. Sci., 2021, 12, 10878 DOI: 10.1039/D1SC02434E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements