Jump to main content
Jump to site search


Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO

Author affiliations

Abstract

Electrocatalytic reduction of CO2 into multicarbon (C2+) products powered by renewable electricity offers one promising method for CO2 utilization and promotes the storage of renewable energy under an ambient environment. However, there is still a dilemma in the manufacture of valuable C2+ products between balancing selectivity and activity. In this work, cerium oxides were combined with CuO (CeO2/CuO) and showed an outstanding catalytic performance for C2+ products. The faradaic efficiency of the C2+ products could reach 75.2% with a current density of 1.21 A cm−2. In situ experiments and density functional theory (DFT) calculations demonstrated that the interface between CeO2 and Cu and the subsurface Cu2O coexisted in CeO2/CuO during CO2RR and two competing pathways for C–C coupling were promoted separately, of which hydrogenation of *CO to *CHO is energetically favoured. In addition, the introduction of CeO2 also enhanced water activation, which could accelerate the formation rate of *CHO. Thus, the selectivity and activity for C2+ products over CeO2/CuO can be improved simultaneously.

Graphical abstract: Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO

Back to tab navigation

Supplementary files

Article information


Submitted
25 Feb 2021
Accepted
29 Mar 2021
First published
30 Mar 2021

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2021, Advance Article
Article type
Edge Article

Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO

X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen, R. Feng, J. Zhang and B. Han, Chem. Sci., 2021, Advance Article , DOI: 10.1039/D1SC01117K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements