Issue 31, 2021

Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys

Abstract

Given a desired property, locating relevant materials is always highly desired but very challenging in a range of areas, including heterogeneous catalysis. Obviously, object-oriented design/screening is an ideal solution to this problem. Herein, we develop an inverse catalyst design workflow in Python (CATIDPy) that utilizes a genetic-algorithm-based global optimization method to guide on-the-fly density functional theory calculations, successfully realizing the highly accelerated location of active single-atom alloy (SAA) catalysts for the hydrogen evolution reaction (HER). 70 binary and 752 ternary SAA candidate catalysts are identified for the HER. Furthermore, via considering the segregation stability and cost of materials, we extracted 6 binary and 142 ternary SAA candidate catalysts that are recommended for experimental synthesis. Remarkably, guided by these theoretical identifications, homogeneously dispersed Ni-based bimetallic catalysts (e.g., NiMo, NiAl, Ni3Al, NiGa, and NiIn) were synthesized experimentally to test the reliability of the CATIDPy workflow, and they showed superior HER performance to bare Ni foam, indicating huge potential for use in real-world water electrolysis techniques. Perhaps more importantly, these results demonstrate the capacity of such a proposed approach for investigating unexplored chemical spaces to efficiently design promising catalysts without knowledge from the expert domain, which has far-reaching implications.

Graphical abstract: Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Feb 2021
Accepted
01 Jul 2021
First published
01 Jul 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 10634-10642

Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys

C. Zhou, J. Y. Zhao, P. F. Liu, J. Chen, S. Dai, H. G. Yang, P. Hu and H. Wang, Chem. Sci., 2021, 12, 10634 DOI: 10.1039/D1SC01018B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements