Issue 10, 2021

Towards controlled bubble nucleation in microreactors for enhanced mass transport

Abstract

The interplay of heat and mass transfer in a gas/liquid/solid or heterogeneous catalytic microreactor, in which bubbles grow on a surface, is highly complex. Specifically, distortion of the fluid due to the protrusion and the location of the bubbles can affect transport phenomena, and, in turn, the chemical conversion. Therefore, understanding nucleation and growth of bubbles within microreactors is desirable to optimize reactor performance. A promising approach to that end, and to ultimately control transport phenomena in multiphase catalytic microreactors, is to direct the nucleation of bubbles. For this purpose, we report here a microfluidic device that contains hydrophobic micropits along the smooth floor of a rectangular cross-section microchannel, which were patterned in a silicon substrate using deep reactive ion etching. The pits are intended to act as nucleation sites. Device performance was evaluated for the two cases of boiling of water and outgassing of dissolved carbon dioxide (CO2). As intended, bubbles were observed to form at the micropits, but also along the rough microchannel side walls. Confocal microscopy revealed that bubbles had spherical shapes, and formed a contact angle with the microchannel floor of >90°. The experimentally determined bubble geometry was used as the boundary condition for a 3D-numerical model. Numerical simulations indicated that the presence of bubbles had a large impact on the local flow distribution, concentration field and reaction conversion within the microreactor, and therefore on the overall conversion for a chosen model reaction.

Graphical abstract: Towards controlled bubble nucleation in microreactors for enhanced mass transport

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2021
Accepted
14 Jul 2021
First published
16 Jul 2021
This article is Open Access
Creative Commons BY-NC license

React. Chem. Eng., 2021,6, 1869-1877

Towards controlled bubble nucleation in microreactors for enhanced mass transport

R. M. Ripken, J. A. Wood, S. Schlautmann, A. Günther, H. J. G. E. Gardeniers and S. Le Gac, React. Chem. Eng., 2021, 6, 1869 DOI: 10.1039/D1RE00092F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements