Issue 62, 2021, Issue in Progress

Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts

Abstract

Xylose is a major component of hemicelluloses. In this paper, its hydrogenation to xylitol in aqueous medium was investigated with two Ru/TiO2 catalysts prepared with two commercial TiO2 supports. A strong impact of the support on catalytic performance was evidenced. Ru/TiO2-R led to fast and selective conversion of xylose (100% conversion in 2 h at 120 °C with 99% selectivity) whereas Ru/TiO2-A gave a slower and much less selective transformation (58% conversion in 4 h at 120 °C with 17% selectivity) with the formation of several by-products. Detailed characterization of the catalysts with ICP, XRD, FTIR, TEM, H2 chemisorption, N2 porosimetry, TPR and acid–base titration was performed to elucidate the role of each support. TiO2-R has a small specific surface area with large ruthenium nanoparticles in weak interaction with the TiO2 support and no acidity, whereas TiO2-A is a mesoporous material with a large specific surface area that is mildly acidic, and bears small ruthenium particles in strong interaction with the TiO2 support. The former was very active and selective for xylose hydrogenation to xylitol whereas the latter was less active and poorly selective. Moreover, careful analysis of the reaction products also revealed that anatase TiO2 can catalyze undesired side-reactions such as xylose isomerisation to various pentoses, and therefore the corresponding unexpected polyols (arabitol, ribitol) were produced during xylose conversion by hydrogenation. In a first kinetic approach, a simplified kinetic model was built to compare quantitatively intrinsic reaction rates of both catalysts. The kinetic constant for hydrogenation was 20 times higher for Ru/TiO2-R at 120 °C.

Graphical abstract: Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2021
Accepted
29 Nov 2021
First published
10 Dec 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 39387-39398

Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts

L. Vilcocq, A. Paez, V. D. S. Freitas, L. Veyre, P. Fongarland and R. Philippe, RSC Adv., 2021, 11, 39387 DOI: 10.1039/D1RA08193D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements