Issue 62, 2021, Issue in Progress

Enhanced storage behavior of quasi-solid-state aluminum–selenium battery

Abstract

The current aluminum batteries with selenium positive electrodes have been suffering from dramatic capacity loss owing to the dissolution of Se2Cl2 products on the Se positive electrodes in the ionic liquid electrolyte. For addressing this critical issue and achieving better electrochemical performances of rechargeable aluminum–selenium batteries, here a gel-polymer electrolyte which has a stable and strongly integrated electrode/electrolyte interface was adopted. Quite intriguingly, such a gel-polymer electrolyte enables the solid-state aluminum–selenium battery to present a lower self-discharge and obvious discharging platforms. Meanwhile, the discharge capacity of the aluminum–selenium battery with a gel-polymer electrolyte is initially 386 mA h g−1 (267 mA h g−1 in ionic liquid electrolyte), which attenuates to 79 mA h g−1 (32 mA h g−1 in ionic liquid electrolyte) after 100 cycles at a current density of 200 mA g−1. The results suggest that the employment of a gel-polymer electrolyte can provide an effective route to improve the performance of aluminum–selenium batteries in the first few cycles.

Graphical abstract: Enhanced storage behavior of quasi-solid-state aluminum–selenium battery

Article information

Article type
Paper
Submitted
03 Nov 2021
Accepted
03 Dec 2021
First published
13 Dec 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 39484-39492

Enhanced storage behavior of quasi-solid-state aluminum–selenium battery

H. Lei, S. Li and J. Tu, RSC Adv., 2021, 11, 39484 DOI: 10.1039/D1RA08067A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements