Issue 50, 2021

Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO2 used for oil/water separation

Abstract

At present, the preparation methods of oil–water separation membranes include chemical vapor deposition, electrospinning, atom transfer radical polymerization, etc. Basically, they all have issues of low recycling rate and incontinuous use. In this paper, the epoxy polymer P(GMA-r-MMA) obtained by traditional radical polymerization of glycidyl methacrylate (GMA) monomer and methacrylic acid (MMA) monomer, and pentafluoropropionic acid (PFPA) is used to modify polymer P(GMA-r-MMA) to obtain fluorine-containing epoxy polymer P(GMA-r-MMA)-g-PFPA. Secondly, fluorine-containing epoxy polymer P(GMA-r-MMA)-g-PFPA and amino-modified nano SiO2 is blended, and the cotton fabric is dip-coated to obtain a superhydrophobic surface, thereby preparing an oil–water separation membrane. By controlling the solution concentration, dipping time, drying time and other conditions, the superhydrophobic performance of the separation membrane was characterized, and the best construction conditions for the superhydrophobic surface were obtained: 0.3 mg mL−1 polymer concentration, immersion time 6 h, drying temperature 120°, and drying time 4 h, and the maximum water contact angle can reach to 150° ± 2°. Finally, the cotton fabric was modified under the best dipping conditions, and used as an oil–water separation membrane to study the oil–water separation performance of n-hexane, n-octane, kerosene, chloroform and water mixtures in batch operation and continuous operation. In batch operations, the separation efficiency can reach 99% and can achieve 5 consecutive high-efficiency separations without intermittent drying. In continuous flow operation, oil–water separation can last for more than 12 hours and the separation efficiency can reach 98%. It also has stable oil–water separation performance for oil–water emulsion.

Graphical abstract: Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO2 used for oil/water separation

Article information

Article type
Paper
Submitted
24 Aug 2021
Accepted
01 Sep 2021
First published
24 Sep 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 31675-31687

Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO2 used for oil/water separation

C. Hou and C. Cao, RSC Adv., 2021, 11, 31675 DOI: 10.1039/D1RA06393F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements