Issue 56, 2021

Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery

Abstract

The aim of this study was to evaluate the effect of magnetite particles on the anaerobic digestion of excess sludge. The results showed that methane production increased with the increase in magnetite dosage in the range of 0–5 g L−1, and the cumulative methane production increased by 50.1% at a magnetite dosage of 5 g L−1 compared with the blank reactor after 20 days. Simultaneously, numerous volatile fatty acids (VFAs) were produced at high magnetite dosages, providing the required substrates for methanogenesis. The concentration of magnetite addition was positively correlated with methane production, which proved that magnetite was beneficial for the promotion of the conversion of VFAs to methane. Moreover, the degradation efficiencies of proteins and carbohydrates reached 64% and 52.6% at the magnetite dosage of 5 g L−1, respectively, and corresponding activities of protease and coenzyme F420 were 9.03 IU L−1 and 1.652 μmol L−1. In addition, the Methanosaeta and Methanoregula genus were enriched by magnetite, which often participate in direct interspecies electron transfer as electron acceptors.

Graphical abstract: Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2021
Accepted
13 Oct 2021
First published
04 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 35559-35566

Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery

X. Kang and Y. Liu, RSC Adv., 2021, 11, 35559 DOI: 10.1039/D1RA06236K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements