Issue 49, 2021

Solventless synthesis of nanospinel Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions for efficient electrochemical water splitting and supercapacitance

Abstract

The formation of solid solutions represents a robust strategy for modulating the electronic properties and improving the electrochemical performance of spinel ferrites. However, solid solutions have been predominantly prepared via wet chemical routes, which involve the use of harmful and/or expensive chemicals. In the present study, a facile, inexpensive and environmentally benign solventless route is employed for the composition-controlled synthesis of nanoscopic Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions. The physicochemical characterization of the samples was performed by p-XRD, SEM, EDX, XPS, TEM, HRTEM and UV-Vis techniques. A systematic investigation was also carried out to elucidate the electrochemical performance of the prepared nanospinels towards energy generation and storage. Based on the results of CV, GCD, and stability tests, the Ni0.4Co0.6Fe2O4 electrode showed the highest performance for the supercapacitor electrode exhibiting a specific capacitance of 237 F g−1, superior energy density of 10.3 W h kg−1 and a high power density with a peak value of 4208 W kg−1, and 100% of its charge storage capacity was retained after 4000 cycles with 97% coulombic efficiency. For HER, the Ni0.6Co0.4Fe2O4 and CoFe2O4 electrodes showed low overpotentials of 168 and 169 mV, respectively, indicating better catalytic activity. For OER, the Ni0.8Co0.2Fe2O4 electrode exhibited a lower overpotential of 320 mV at a current density of 10 mA cm−2, with a Tafel slope of 79 mV dec−1, demonstrating a fast and efficient process. These results indicated that nanospinel ferrite solid solutions could be employed as promising electrode materials for supercapacitor and water splitting applications.

Graphical abstract: Solventless synthesis of nanospinel Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions for efficient electrochemical water splitting and supercapacitance

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2021
Accepted
10 Sep 2021
First published
20 Sep 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 31002-31014

Solventless synthesis of nanospinel Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions for efficient electrochemical water splitting and supercapacitance

N. M. Malima, M. D. Khan, J. Choi, R. K. Gupta, P. Mashazi, T. Nyokong and N. Revaprasadu, RSC Adv., 2021, 11, 31002 DOI: 10.1039/D1RA04833C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements