Issue 36, 2021, Issue in Progress

In situ gelation of aqueous sulfuric acid solution for fuel cells

Abstract

Aqueous sulfuric acid solution is a versatile liquid electrolyte for electrochemical applications and gelation of it has the advantages of easy shaping and reduced leaking. Herein, aqueous sulfuric acid solutions with concentrations of 1–4 mol L−1 are fabricated into gel membranes by in situ polymerization of acrylamide as a monomer and divilynbenzene as a crosslinker for fuel cell applications. The gel membrane with an acid concentration of 3.5 mol L−1 exhibited the maximum proton conductivity of 184 mS cm−1 at 30 °C. Tensile fracture strength of the gel membrane reached 53 kPa with a tensile strain of 14. Thermogravimetric analysis reveals that the gel membranes are thermally stable at temperatures up to 231 °C. The gel membranes are successfully assembled into fuel cells and a peak power density of 74 mW cm−2 is achieved. The fuel cell maintains steady operation over 200 h. In situ gelation of aqueous sulfuric acid solution offers an efficient strategy to prepare gel electrolytes for electrochemical devices.

Graphical abstract: In situ gelation of aqueous sulfuric acid solution for fuel cells

Article information

Article type
Paper
Submitted
03 Apr 2021
Accepted
18 Jun 2021
First published
24 Jun 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 22461-22466

In situ gelation of aqueous sulfuric acid solution for fuel cells

X. Wang, J. You and Y. Wu, RSC Adv., 2021, 11, 22461 DOI: 10.1039/D1RA02629A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements