Issue 30, 2021, Issue in Progress

Influence of cerium doping on Cu–Ni/activated carbon low-temperature CO-SCR denitration catalysts

Abstract

In this study, to evaluate the effects of two methods for activation of nitric acid, air thermal oxidation and Ce doping were applied to a Cu–Ni/activated carbon (AC) low-temperature CO-SCR denitration catalyst. The Cu–Ni–Ce/AC0,1 catalyst was prepared using the ultrasonic equal volume impregnation method. The physical and chemical structures of Cu–Ni–Ce/AC0,1 were studied using scanning electron microscopy, Brunauer–Emmett–Teller analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, CO-temperature programmed desorption (TPD) and NO-TPD characterisation techniques. It was found that the denitration efficiency of 6Cu–4Ni–5Ce/AC1 can reach 99.8% at a denitration temperature of 150 °C, a GHSV of 30 000 h−1 and 5% O2. Although the specific surface area of the AC activated by nitric acid was slightly lower than that activated by air thermal oxidation, the pore structure of the AC activated by nitric acid was more developed, and the number of acidic oxygen-containing functional groups was significantly increased. Ce metal ions were inserted into the graphite microcrystalline structure of AC, splitting it into smaller graphene fragments, whereby the dispersibility of Cu and Ni was improved. In addition, many reaction units were formed on the catalyst surface, which could adsorb more CO and NO reaction gases. With the increase in Ce doping, the relative proportions of Cu2+/Cun+, Ni3+/Nin+ and surface adsorbed oxygen (Oα) in the Cu–Ni–Ce/AC0,1 catalyst increased. In addition, after the introduction of Ce into Cu–Ni/AC, the amount of weak and medium acids significantly increased. This may be due to the Ce species or its influence on the Cu/Ni species. Further, the active sites of the acid were more exposed. According to the results of the study, a composite metal oxide CO-SCR denitration mechanism is proposed. Through the oxidation–reduction reaction between the metals, the reaction gas of CO and NO is adsorbed and the incoming O2 is converted into (Oα), which promotes the conversion of NO into NO2. The CO-SCR reaction is accelerated, and the rate of low-temperature denitration was increased. Overall, the results of this study will provide theoretical support for the research and development of low-temperature denitration catalysts for sintering flue gas in iron and steel enterprises.

Graphical abstract: Influence of cerium doping on Cu–Ni/activated carbon low-temperature CO-SCR denitration catalysts

Article information

Article type
Paper
Submitted
25 Mar 2021
Accepted
13 May 2021
First published
21 May 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 18458-18467

Influence of cerium doping on Cu–Ni/activated carbon low-temperature CO-SCR denitration catalysts

D. Wang, B. Huang, Z. Shi, H. Long, L. Li, Z. Yang and M. Dai, RSC Adv., 2021, 11, 18458 DOI: 10.1039/D1RA02352G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements