Issue 20, 2021, Issue in Progress

Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators

Abstract

A superamphiphobic coating is usually prepared via a reduction reaction and then deposited onto the surface of the substrate. This technology is difficult to control and achieve high bond strength, which easily leads to powder shedding. To overcome this issue, electroplating technology is usually preferred for preparing adhesion coatings. However, the coating prepared using this method is usually suitable only for hard steel substrates, and not for soft substrates such as carbon brushes. Herein, we demonstrate an air spray technology for preparing anti-greasy and conductive superamphiphobic graphite-1H,1H,2H,2H-perfluorooctyltrichlorosilane–SiO2 (GPS) coatings suitable for both soft substrates (carbon brushes) and hard substrates (collector rings). The sheet resistance of the coating with 10% graphite content is 4.8 × 10−3 Ω □−1 for a 10 μm thin coating, corresponding to a resistivity of 4.8 μΩ cm. More importantly, the prepared coating has excellent liquid repellency, such as water, rapeseed oil and n-hexane. In addition, the coating has excellent anti-greasy and mechanical properties, which provide a brand-new solution for the greasy pollution in the engineering field. These advantages will enhance the application of superamphiphobic GPS coating in the fields of hydropower, wind power and transportation, and so on.

Graphical abstract: Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators

Article information

Article type
Paper
Submitted
02 Mar 2021
Accepted
15 Mar 2021
First published
29 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12381-12391

Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators

Y. Fu, H. Qin and Z. Guo, RSC Adv., 2021, 11, 12381 DOI: 10.1039/D1RA01656C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements