Issue 20, 2021, Issue in Progress

Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO3H, and application of the functional-chromophore products as colorimetric chemosensors

Abstract

An efficient and convenient one-pot multicomponent reaction (MCR) for the synthesis and dehydrogenation of tricyclic dihydropyrimidine derivatives, catalyzed by –SO3H functionalized octahedral manganese oxide molecular sieves (OMS-2-SO3H) as a novel solid acid catalyst, is reported. All of the organic products and the catalyst were unambiguously characterized with conventional techniques including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), 1H NMR, and 13C NMR spectroscopy. The targeted dehydrogenated chromophore compounds were successfully used as colorimetric chemosensors for detection of transition metals in aqueous solution. For example, 1-[4-(4-hydroxy-3-methoxy-phenyl)-2-methyl-benzo[4,5]imidazo[1,2-a]pyrimidin-3-yl]-ethanone (7d), exhibited high sensitivity and selectivity toward detection of Cr3+ over a panel of other transition metal cations. The interference of foreign ions was found to be negligible. It was found that a 1 : 1 complex of Cr3+ and 7d is responsible for the color change of the solution from ochre to brown. These newly devised chemosensors can also exhibit significant wavelength shifts (up to 100 nm) when used as pH indicators. 7d for example, showed a vivid and sharp color change from pink to yellow in the pH range of 4 to 6.

Graphical abstract: Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO3H, and application of the functional-chromophore products as colorimetric chemosensors

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2021
Accepted
23 Mar 2021
First published
29 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12349-12360

Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO3H, and application of the functional-chromophore products as colorimetric chemosensors

N. Mardazad, A. Khorshidi and A. Fallah Shojaei, RSC Adv., 2021, 11, 12349 DOI: 10.1039/D1RA01005K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements