Issue 21, 2021

FTIR product study of the Cl-initiated oxidation products of CFC replacements: (E/Z)-1,2,3,3,3-pentafluoropropene and hexafluoroisobutylene

Abstract

A product study of the reactions of (E/Z)-1,2,3,3,3-pentafluoropropene ((E/Z)-CF3CF[double bond, length as m-dash]CHF) and hexafluoroisobutylene ((CF3)2C[double bond, length as m-dash]CH2) initiated by Cl atoms were developed at 298 ± 2 K and atmospheric pressure. The experiments were carried out in a 1080 L quartz-glass environmental chamber coupled via in situ FTIR spectroscopy to monitor the reactants and products. The main products observed and their yields were as follows: CF3C(O)F (106 ± 9)% with HC(O)F (100 ± 8)% as a co-product for (E/Z)-CF3CF[double bond, length as m-dash]CHF, and CF3C(O)CF3 (94 ± 5)% with HC(O)Cl (90 ± 7)% as a co-product for (CF3)2C[double bond, length as m-dash]CH2. Atmospheric implications of the end-product degradation are assessed in terms of their impact on ecosystems to help environmental policymakers consider HFOs as acceptable replacements.

Graphical abstract: FTIR product study of the Cl-initiated oxidation products of CFC replacements: (E/Z)-1,2,3,3,3-pentafluoropropene and hexafluoroisobutylene

Article information

Article type
Paper
Submitted
12 Jan 2021
Accepted
10 Mar 2021
First published
01 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12739-12747

FTIR product study of the Cl-initiated oxidation products of CFC replacements: (E/Z)-1,2,3,3,3-pentafluoropropene and hexafluoroisobutylene

C. B. Rivela, R. G. Gibilisco, C. M. Tovar, I. Barnes, P. Wiesen, M. B. Blanco and M. A. Teruel, RSC Adv., 2021, 11, 12739 DOI: 10.1039/D1RA00283J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements