Issue 1, 2021, Issue in Progress

Recovery of valuable metals from mixed spent lithium-ion batteries by multi-step directional precipitation

Abstract

The novel strategy of multi-step directional precipitation is proposed for recovering valuable metals from the leachate of cathode material obtained by mechanical disassembly from mixed spent lithium-ion batteries. Based on thermodynamics and directional precipitation, Mn2+ is selectively precipitated under conditions of MRNM (molar ratio of (NH4)2S2O8 to Mn2+) = 3, pH = 5.5 and 80 °C for 90 min. Ni2+ was then selectively precipitated using C4H8N2O2 under conditions of pH = 6, MRCN (molar ratio of C4H8N2O2 to Ni2+) = 2, 30 °C and 20 min. Then, the pH was adjusted to 10 to precipitate Co2+ as Co(OH)2. Finally, Li+ was recovered by Na2CO3 at 90 °C. The precipitation rates of Mn, Ni, Co, and Li reached 99.5%, 99.6%, 99.2% and 90%, respectively. The precipitation products with high purity can be used as raw materials for industrial production based on characterization. The economical and efficient recovery process can be applied in industrialized large-scale recycling of spent lithium-ion batteries.

Graphical abstract: Recovery of valuable metals from mixed spent lithium-ion batteries by multi-step directional precipitation

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2020
Accepted
13 Dec 2020
First published
23 Dec 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 268-277

Recovery of valuable metals from mixed spent lithium-ion batteries by multi-step directional precipitation

X. Yang, Y. Zhang, Q. Meng, P. Dong, P. Ning and Q. Li, RSC Adv., 2021, 11, 268 DOI: 10.1039/D0RA09297E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements