Issue 39, 2021

Tandem copper catalyzed regioselective N-arylation–amidation: synthesis of angularly fused dihydroimidazoquinazolinones and the anticancer agent TIC10/ONC201

Abstract

Herein, we present a copper-catalyzed tandem reaction of 2-aminoimidazolines and ortho-halo(hetero)aryl carboxylic acids that causes the regioselective formation of angularly fused tricyclic 1,2-dihydroimidazo[1,2-a]quinazolin-5(4H)-one derivatives. The reaction involved in the construction of the core six-membered pyrimidone moiety proceeded via regioselective N-arylation–condensation. The presented protocol been successfully applied to accomplish the total synthesis of TIC10/ONC201, which is an active angular isomer acting as a tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL): a sought after anticancer clinical agent.

Graphical abstract: Tandem copper catalyzed regioselective N-arylation–amidation: synthesis of angularly fused dihydroimidazoquinazolinones and the anticancer agent TIC10/ONC201

Supplementary files

Article information

Article type
Communication
Submitted
09 Aug 2021
Accepted
09 Sep 2021
First published
09 Sep 2021

Org. Biomol. Chem., 2021,19, 8497-8501

Tandem copper catalyzed regioselective N-arylation–amidation: synthesis of angularly fused dihydroimidazoquinazolinones and the anticancer agent TIC10/ONC201

J. M. Honnanayakanavar, J. B. Nanubolu and S. Suresh, Org. Biomol. Chem., 2021, 19, 8497 DOI: 10.1039/D1OB01561C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements