Issue 46, 2021

Structural characteristics of Al2O3 ultra-thin films supported on the NiAl(100) substrate from DFTB-aided global optimization

Abstract

Surfaces of aluminum alloys are often coated with ultra-thin alumina films which form by self-limited selective oxidation. Although the presence of such films is of paramount importance in various applications, their structural and stability characteristics remain far from being known. In particular, on the NiAl(100) substrate, the observed structure has been tentatively assigned to a distorted θ-alumina polymorph, but the film stoichiometry, the nature of its surface and interface terminations, as well as the mechanisms that stabilize the θ phase remain unknown. Using a combined tight-binding/DFT genetic algorithm approach, we explicitly demonstrate that ultra-thin θ(100)-type films correspond to the structural ground state of alumina supported on the (2 × 1)-NiAl(100) substrate. Thus, experimentally observed θ-alumina films correspond to thermodynamic equilibrium, rather than being the result of kinetic effects involved in the alloy oxidation and film growth. They are favoured over other Al2O3 phases of dehydrated boehmite, pseudo-CaIrO3, γ, or bixbyite structures, which have recently been identified among the most stable free-standing ultra-thin alumina polymorphs. Moreover, our results prove that nonstoichiometry can be easily accommodated by the supported θ(100) film structure via an excess or deficiency of oxygen atoms at the very interface with the metal substrate. Dedicated DFT analysis reveals that the oxide-metal interaction at stoichiometric interfaces depends surprisingly little on the composition of the NiAl surface. Conversely, at oxygen-rich/poor interfaces, the number of additional/missing Al–O bonds is directly responsible for their relative stability. Finally the comparison between the experimental and theoretical electronic characteristics (STM and XPS) of supported θ(100)-type films provides clues on the detailed structure of the experimentally observed films.

Graphical abstract: Structural characteristics of Al2O3 ultra-thin films supported on the NiAl(100) substrate from DFTB-aided global optimization

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2021
Accepted
27 Oct 2021
First published
13 Nov 2021

Nanoscale, 2021,13, 19500-19510

Structural characteristics of Al2O3 ultra-thin films supported on the NiAl(100) substrate from DFTB-aided global optimization

M. Van den Bossche, J. Goniakowski and C. Noguera, Nanoscale, 2021, 13, 19500 DOI: 10.1039/D1NR05705G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements