Issue 39, 2021

Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies

Abstract

DNA-mediated assembly of colloidal particles can be utilized to produce a variety of structures which may have desirable phononic, photonic, or electronic transport properties. Recent developments in linker-mediated assembly processes allow for interactions to be coordinated between many different types of colloidal particles more easily and with fewer unique sequences than direct hybridization. However, the dynamics of colloidal self-assembly becomes increasingly more complex when coordinating interactions between three or more distinct interacting elements. In such cases particle pairs with similar binding energies are allowed to interact unpredictably, and enthalpically degenerate binding sites will be noticeably more present while numerous secondary phases may also result from the self-assembly process. Therefore, it is necessary to develop procedures for predicting feasible superstructure geometries for these systems before they can be implemented in material design. Here we investigate the formation of multifarious ordered structures through self-assembly of multiple types of spherically symmetrical colloidal particles with a variety of interaction matrices. We utilize Molecular Dynamics (MD) simulations to study the growth behavior of systems with different types of interacting elements and different particle sizes, and also predict the formation and stability of the target structures. We also study the phononic spectra of various ternary structures in order to identify the influence of key structural parameters on phonon bandgap frequencies and ranges. Our results provide direct guidelines for designing ternary and quadripartite multifarious colloidal structures, and motivate new directions for future experimental work to target formation of multi-component colloidal superstructures beyond the well-established binary symmetries studied in the past.

Graphical abstract: Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies

Article information

Article type
Paper
Submitted
26 Aug 2021
Accepted
14 Sep 2021
First published
14 Sep 2021

Nanoscale, 2021,13, 16554-16563

Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies

J. B. Stahley and M. B. Zanjani, Nanoscale, 2021, 13, 16554 DOI: 10.1039/D1NR05635B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements