Issue 40, 2021

Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS2

Abstract

Tip-induced optical spectroscopy overcomes the inherent resolution limits of conventional optical techniques enabling studies of sub-nm sized objects due to the tip's near-field antenna action. This statement is true for individual molecules on surfaces or in the gas phase, but does not hold without restrictions for spatially extended samples. The reason is that the perturbations caused by the tip extend into the sample volume. The tip may induce strain, heating or hot-carrier injection locally in the material. These effects add additional degrees of complexity by changing near-field and far-field optical response. The far-field response varies because strain relaxation, heat and carrier diffusion possess areas of influence exceeding the sample area influenced by the short-range near-field effects. Tip-in spectra are not simply enhanced compared to tip-out spectra, they will also vary in spectral appearance, i.e., peak positions, relative peak intensities, and linewidths. Detailed studies of MoS2 samples ranging from a single layer to bulk-like multi-layer MoS2 also reveal that the spectra are sensitive to variations of phonon and band structure with increasing layer number. These variations have a direct impact on the signals detected, but also clearly modify the relative magnitudes of the contributions of the tip-induced effects to the tip-in spectra. In addition, the optical response is affected by the kind of tip and substrate used. Hence, the presented results provide further insight into the underlying microscopic mechanisms of tip-enhanced spectroscopy and demonstrate that 2D materials are an ideal playground for obtaining a fundamental understanding of these spectroscopic techniques.

Graphical abstract: Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS2

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2021
Accepted
17 Sep 2021
First published
11 Oct 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 17116-17124

Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS2

K. Kroth, P. Klement, L. Chen, S. Chatterjee and P. J. Klar, Nanoscale, 2021, 13, 17116 DOI: 10.1039/D1NR02987H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements