Issue 31, 2021

Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy

Abstract

Facing the barriers in each step of the in vivo delivery cascade, the low drug delivery efficiency remains problematic in tumor therapy. Although recently the nanofibril drug delivery systems have shown improved circulation and accumulation compared with nanoparticles, the poor deep penetration and cellular internalization hinder their application, especially for pancreatic cancer with dense stroma. To comprehensively address the hurdles in the delivery cascade, a matrix metalloproteinase 2 (MMP-2) responsive transformable beaded nanofibril, which integrates the merits of nanofibril and small-sized nanoparticles, is established. The beaded nanofibril (GD@PPF) is prepared by conjugating gemcitabine-loaded small-sized nanoparticles (GD) with fibrous PEG–PCL (PPF) via GPLGVRG, a substrate peptide of MMP-2. GD@PPF escapes the clearance of the reticuloendothelial system (RES), prolongs the circulation time, and increases the selective accumulation in the tumor as fibrous micelles. Once accumulated in the tumor, small positively-charged GD is released from the beaded nanofibrils in response to MMP-2 overexpression in the stroma of pancreatic cancer, enabling permeation in the dense tumor matrix and cellular internalization, which makes up for the shortcomings of fibrous micelles. Furthermore, the remaining fibrous PPF surround the tumor tightly to impede the efflux of drugs, leading to improved retention. GD@PPF is biocompatible and exhibits excellent antitumor effect in Pan 02 subcutaneous tumor models. Therefore, the MMP-2 responsive transformable beaded nanofibril, which enhances the delivery efficiency in multiple stage of the delivery cascade, presents a promising strategy for pancreatic cancer therapy.

Graphical abstract: Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2021
Accepted
03 Jul 2021
First published
07 Jul 2021

Nanoscale, 2021,13, 13328-13343

Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy

Q. Sheng, T. Li, X. Tang, W. Zhao, R. Guo, X. Cun, S. Zang, Z. Zhang, M. Li and Q. He, Nanoscale, 2021, 13, 13328 DOI: 10.1039/D1NR02017J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements