Issue 33, 2021

Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power

Abstract

This work sheds light on the pump power impact on the performance of luminescent thermometers, which is often underestimated by researchers. An up-converting, inorganic nanoluminophore, YVO4:Yb3+,Er3+ (nanothermometer) was synthesized using the hydrothermal method and a subsequent calcination. This nanomaterial appears as a white powder composed of small nanoparticles (≈20 nm), exhibiting a very intense, green upconverted luminescence (λex = 975 nm), visible to the naked eye. Its emission spectrum consists of four Er3+ bands (500–850 nm) and one Yb3+ band (>900 nm). The obtained compound exhibits temperature-dependent luminescence properties, hence it is used as an optical nanosensor of temperature. The determined band intensity ratios of the non-thermally coupled levels (non-TCLs) of Yb3+/Er3+ and thermally coupled levels (TCLs) of Er3+ are correlated with temperature, and they are used for ratiometric sensing of temperature. The effects of the pump (NIR laser) power on the luminescence properties of the material, including band intensity ratios, absolute and relative sensitivities and temperature resolution are analysed. It was pointed out that the applied laser power has a huge impact on the values of the aforementioned thermometric parameters, and manipulating the laser power can significantly improve the performance of optical nanothermometers.

Graphical abstract: Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2021
Accepted
19 Jul 2021
First published
22 Jul 2021

Nanoscale, 2021,13, 14139-14146

Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power

N. Stopikowska, M. Runowski, M. Skwierczyńska and S. Lis, Nanoscale, 2021, 13, 14139 DOI: 10.1039/D1NR01395E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements