Issue 11, 2021

Preparation of a polymer nanocomposite via the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS2 for electrochemical energy storage

Abstract

We prepared a poly(pyrrole : biphenyldisulfonic acid : pyrrole (Py:BPDSA:Py)) nanocomposite of molybdenum disulfide (MoS2), P(Py:BPDSA:Py)-MoS2, with high crystallinity. The composite is synthesized by oxidative polymerization of Py:BPDSA:Py as a two-monomer-connected precursor (TMCP) linked by ionic bonding on a molybdenum disulfide (MoS2) monolayer. The chemical, structural and morphological characterization of this composite is confirmed by Raman spectroscopy, FT-IR, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), and scanning electron microscopy (SEM). The crystal structure is analysed by X-ray diffraction (XRD) and high-voltage electron microscopy (HVEM), which shows a face-centered cubic (FCC) crystal structure for the composite. Nitrogen adsorption–desorption isotherms show an improved specific surface area (91.3 m2 g−1). The electrochemical properties of the composite with a unique crystal structure and a large specific surface area are analysed through cyclic voltammetry (CV), which shows a specific capacitance of 681 F g−1 demonstrating that the composite can be used as an efficient electrode active material for electrochemical energy storage systems.

Graphical abstract: Preparation of a polymer nanocomposite via the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS2 for electrochemical energy storage

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2020
Accepted
19 Feb 2021
First published
26 Feb 2021

Nanoscale, 2021,13, 5868-5874

Preparation of a polymer nanocomposite via the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS2 for electrochemical energy storage

W. Kim, H. Lee, S. J. Yoo, C. Kim Trinh, Z. Ahmad and J. Lee, Nanoscale, 2021, 13, 5868 DOI: 10.1039/D0NR08941A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements