Issue 13, 2021

A synaptic memristor based on two-dimensional layered WSe2 nanosheets with short- and long-term plasticity

Abstract

Neural synapses with diverse synaptic functions of short- and long-term plasticity are highly desired for developing complex neuromorphic systems. A memristor with its two terminals serving as pre- and post-neurons, respectively, can emulate two neuronal-based synaptic functions. In this work, multilayer two-dimensional (2D) layered WSe2 nanosheets are synthesized by a salt-assisted chemical vapor deposition (CVD) method. Two-terminal memristors with a planar structure are fabricated based on the CVD-grown triangular WSe2 nanosheets. The fabricated devices exhibit typical bipolar nonvolatile resistive switching behaviors with a high current ON/OFF ratio of up to 6 × 103 and good retention and endurance properties, suggesting good stability and reliability of the WSe2-based memristors. Furthermore, the developed memristors demonstrate synaptic functions of short- and long-term plasticity (STP and LTP), as well as a transition from STP to LTP by applying consecutive pulse voltages. Moreover, the WSe2-based memristors exhibits biological synaptic functions of long-term potentiation and depression, and paired-pulse facilitation. Thus, our 2D WSe2 nanosheet based memristors not only exhibit stable and reliable nonvolatile resistive switching behaviors, but also show potential applications in mimicking biological synapses.

Graphical abstract: A synaptic memristor based on two-dimensional layered WSe2 nanosheets with short- and long-term plasticity

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2020
Accepted
04 Mar 2021
First published
04 Mar 2021

Nanoscale, 2021,13, 6654-6660

A synaptic memristor based on two-dimensional layered WSe2 nanosheets with short- and long-term plasticity

S. Luo, K. Liao, P. Lei, T. Jiang, S. Chen, Q. Xie, W. Luo, W. Huang, S. Yuan, W. Jie and J. Hao, Nanoscale, 2021, 13, 6654 DOI: 10.1039/D0NR08725D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements