Jump to main content
Jump to site search


Plant tissue imaging with bipyramidal upconversion nanocrystals by introducing Tm3+ ions as energy trapping centers

Author affiliations

Abstract

Plant cell imaging is critical for agricultural production and plant pathology study. Advanced upconversion nanoparticles (UCNPs) are being developed as fluorescent probes for imaging cells and tissues in vivo and in vitro. Unfortunately, the thick cellulosic walls as barriers together with hemicelluloses and pectin hinder the entrance of macromolecules into the epidermal plant cell. Hence, realizing satisfactory temporal and spatial resolution with UCNPs remains an arduous task. Here, bipyramidal LiErF4:1%Tm3+@LiYF4 core–shell UCNPs with a super-bright red emission upon 980 nm laser excitation are explored, where the introduction of Tm3+ ions permits alleviation of the energy loss at defective sites and a significant improvement of the upconversion output. The as-obtained bipyramidal UCNPs could readily puncture plant cell walls and further penetrate into cell membranes, facilitating improved tissue imaging of cellular internalization, as demonstrated with the luminescence images obtained by multiphoton laser-scanning microscopy. Hence our work opens up a new avenue for exploring effective upconversion nanoparticles for achieving high resolution imaging of plant tissues.

Graphical abstract: Plant tissue imaging with bipyramidal upconversion nanocrystals by introducing Tm3+ ions as energy trapping centers

Back to tab navigation

Supplementary files

Article information


Submitted
15 Oct 2020
Accepted
05 Apr 2021
First published
07 Apr 2021

Nanoscale, 2021, Advance Article
Article type
Paper

Plant tissue imaging with bipyramidal upconversion nanocrystals by introducing Tm3+ ions as energy trapping centers

Y. Qiao, S. Qiao, X. Yu, Q. Min, C. Pi, J. Qiu, H. Ma, J. Yi, Q. Zhan and X. Xu, Nanoscale, 2021, Advance Article , DOI: 10.1039/D0NR07399G

Social activity

Search articles by author

Spotlight

Advertisements