Highly flexible and degradable memory electronics comprised of all-biocompatible materials†
Abstract
Biocompatible materials have received increasing attention as one of the most important building blocks for flexible and transient memories. Herein, a fully biocompatible resistive switching (RS) memory electronic composed of a carbon dot (CD)-polyvinyl pyrrolidone (PVP) nanocomposite and a silver nanowire (Ag NW) network buried in a flexible gelatin film is introduced with promising nonvolatile RS characteristics for flexible and transient memory applications. The fabricated device exhibited a rewritable flash-type memory behavior, such as low operation voltage (≈ −1.12 V), high ON/OFF ratio (>102), long retention time (over 104 s), and small bending radius (15 mm). As a proof of degradability, this transient memory can dissolve completely within 90 s after being immersed into deionized water at 55 °C; it can decompose naturally in soil within 6 days. This fully biocompatible memory electronic paves a novel way for flexible and wearable green electronics.