Issue 39, 2021

Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles

Abstract

In this study, selective and sensitive detection of the neurotransmitter dopamine (DA) in both aqueous solution and biological samples was performed using a surface plasmon resonance (SPR) sensor based on a molecular imprinting technique. For this, dopamine-imprinted poly(2-hydroxyethyl methacrylate-N-methacroyl-(L)-cysteine methyl ester-gold nanoparticles-N-methacryloyl-L-phenylalanine methyl ester) [PHEMAC-AuNPs/MAPADA] nanoparticles were prepared. Furthermore, to evaluate the imprinting efficiency, non-imprinted [PHEMAC-AuNPs/MAPA] nanoparticles were designed using the same polymerization procedure except for the addition of dopamine molecules. To examine the effect of incorporating AuNPs to increase the SPR signal response, control experiments were carried out via the SPR biosensor produced using [PHEMAC/MAPADA] nanoparticles prepared without the addition of AuNPs. Characterization studies of dopamine- + imprinted [PHEMAC-AuNPs/MAPADA] and non-imprinted [PHEMAC-AuNPs/MAPA] nanoparticles was performed with a zetasizer and an FTIR-ATR spectrophotometer. In addition, dopamine-imprinted [PHEMAC-AuNPs/MAPADA] and non-imprinted [PHEMAC-AuNPs/MAPADA] SPR sensors were characterized by ellipsometer and contact angle measurements. The high imprinting efficiency (I.F: 9.67) of the dopamine-imprinted [PHEMAC-AuNPs/MAPADA] SPR sensor was determined by comparing it with the non-imprinted [PHEMAC-AuNPs/MAPA] SPR sensor. A good linear relationship was obtained in the 0.01–0.5 ppb concentration range with correlation coefficients of 0.9818 and 0.9819, respectively. The dopamine-imprinted [PHEMAC-AuNPs/MAPADA] SPR sensor was 5.53 and 4.59 times more selective for the target molecule dopamine than for epinephrine (EP) and norepinephrine (NE), respectively. The repeatability of the [PHEMAC-AuNPs/MAPADA] SPR sensor was assessed with a 0.5 ppb dopamine solution, with the percent relative standard deviation of the intra-assays (RSD) being less than 1.7%, indicating negligible loss of dopamine sensing capability after four adsorption–desorption cycles with the same sensor.

Graphical abstract: Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2021
Accepted
02 Sep 2021
First published
03 Sep 2021

New J. Chem., 2021,45, 18296-18306

Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles

D. Türkmen, M. Bakhshpour, I. Göktürk, S. Aşır, F. Yılmaz and A. Denizli, New J. Chem., 2021, 45, 18296 DOI: 10.1039/D1NJ01938D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements