A novel boron ketoiminate-based conjugated polymer with large Stokes shift: AIEE feature and cell imaging application†
Abstract
AIE/AIEE-active conjugated polymers have shown great potential in bioimaging applications. However, the absorption of many AIE/AIEE polymers poorly matches with the laser excitation used in confocal imaging, which may greatly affect the imaging quality. In this regard, we designed and synthesized a novel conjugated polymer incorporating π-extended boron ketoiminate units. The resulting polymer shows typical aggregation-induced enhanced emission (AIEE) characteristics and a dominant UV absorption of 447 nm in THF, which matches well with the laser excitation. Moreover, the polymer exhibits a Stokes shift up to 100 nm, which makes it a good candidate for cell imaging applications. The polymer was subsequently encapsulated into amphiphilic poly(styrene-co-maleic anhydride) (PSMA) to yield conjugated polymer nanoparticles (CPNs) (∼65 nm), which can emit bright yellow fluorescence in aqueous media with a quantum yield of 15%. Meanwhile, the HeLa cell imaging results demonstrate that the CPNs exhibit low cytotoxicity and high photostability, which are good contrast agents for biological fluorescence imaging.

Please wait while we load your content...