Issue 11, 2021

Layer contribution to optical signals of van der Waals heterostructures


The optical signals (such as Raman scattering, absorption, reflection) of van der Waals heterostructures (vdWHs) are very important for structural analysis and the application of optoelectronic devices. However, there is still a lack of research on the effect of each layer of two-dimensional materials on the optical signals of vdWHs. Here, we investigated the contribution from different layers to the optical signal of vdWHs by using angle-resolved polarized Raman spectroscopy (ARPRS) and angle-dependent reflection spectroscopy. A suitable theoretical model for the optical signal of vdWHs generated by different layers was developed, and vdWHs stacked by different two-dimensional (2D) materials were analyzed. The results revealed a strong dependence of the relative strengths of the optical signals of the upper and lower layers on the thicknesses of 2D materials and the SiO2 layer on the Si/SiO2 substrate. Interestingly, on the 285 nm SiO2/Si substrate, the contribution to the optical signal by the underlying 2D material was much greater than that by the upper layer. Furthermore, optical signals originating from different layers of twisted black phosphorus (BP) for different twist angles were studied. There is great significance for optical spectroscopy to study vdWHs, as well as the development of better twisted 2D materials and moiré physics.

Graphical abstract: Layer contribution to optical signals of van der Waals heterostructures

Supplementary files

Article information

Article type
28 Oct 2020
09 Apr 2021
First published
10 Apr 2021
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2021,3, 3114-3123

Layer contribution to optical signals of van der Waals heterostructures

S. Wang, G. Chen, Q. Guo, K. Huang, X. Zhang, X. Yan, Z. Liu and J. Tian, Nanoscale Adv., 2021, 3, 3114 DOI: 10.1039/D0NA00906G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity