Issue 11, 2021

Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction

Abstract

Multi-walled carbon nanotubes (MWCNTs) are made of multiple single-walled carbon nanotubes (SWCNTs) which are nested inside one another forming concentric cylinders. These nanomaterials are widely used in industrial and biomedical applications, due to their unique physicochemical characteristics. However, previous studies have shown that exposure to MWCNTs may lead to toxicity and some of the physicochemical properties of MWCNTs can influence their toxicological profiles. In silico modelling can be applied as a faster and less costly alternative to experimental (in vivo and in vitro) testing for the hazard characterization of MWCNTs. This study aims at developing a fully validated predictive nanoinformatics model based on statistical and machine learning approaches for the accurate prediction of genotoxicity of different types of MWCNTs. Towards this goal, a number of different computational workflows were designed, combining unsupervised (Principal Component Analysis, PCA) and supervised classification techniques (Support Vectors Machine, “SVM”, Random Forest, “RF”, Logistic Regression, “LR” and Naïve Bayes, “NB”) and Bayesian optimization. The Recursive Feature Elimination (RFE) method was applied for selecting the most important variables. An RF model using only three features was selected as the most efficient for predicting the genotoxicity of MWCNTs, exhibiting 80% accuracy on external validation and high classification probabilities. The most informative features selected by the model were “Length”, “Zeta average” and “Purity”.

Graphical abstract: Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2020
Accepted
11 Apr 2021
First published
12 Apr 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 3167-3176

Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction

M. Kotzabasaki, I. Sotiropoulos, C. Charitidis and H. Sarimveis, Nanoscale Adv., 2021, 3, 3167 DOI: 10.1039/D0NA00600A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements