Issue 12, 2021

Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis

Abstract

Liquid metal (LM) gallium (Ga) is famous for its metallic properties with unique fluidity and has been extensively utilized in modern technologies. However, chemical strategies towards nanostructured Ga are extremely challenging, which severely limits further advanced applications of Ga. This work reports a facile method, the classical galvanic replacement reaction (GRR), to readily realize the synthesis of uniform Ga nano LM through sacrificial seeds (zinc) and gallium ions (Ga3+). Different from the previous tedious Ga nanoparticle synthesis, the GRR can be achieved under mild conditions without involving any highly active reagents or special equipment. Surprisingly, the temperature heavily influences the results of GRR due to the unique solid–liquid phase transition of Ga LM. This work figures out the critical issues of temperature, oxygen and solvent in the GRR to successfully prepare Ga nanodroplets. Interestingly, the GRR provides a convenient strategy to control the size of Ga nano LM to mediate localized surface plasmon resonance (LSPR) in the ultraviolet region, which is hardly observed in noble metals. Besides, the nano Ga from GRR exhibits remarkable SERS detection capability with an extremely low limit of detection (10−6 M), which ranks as the highest enhancement factor with an average value exceeding 105 among Ga materials. Moreover, the SERS activity of the nano Ga shows no obvious decrease within 60 days, verifying its excellent storage stability. This work demonstrates a facile “bottom-up” chemistry for Ga LM, which could greatly benefit its potential applications in the future.

Graphical abstract: Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis

Supplementary files

Article information

Article type
Communication
Submitted
13 Jul 2021
Accepted
13 Sep 2021
First published
13 Sep 2021

Mater. Horiz., 2021,8, 3315-3323

Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis

X. Gao, X. Fan and J. Zhang, Mater. Horiz., 2021, 8, 3315 DOI: 10.1039/D1MH01101D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements