Issue 23, 2021

Indoor light-harvesting dye-sensitized solar cells surpassing 30% efficiency without co-sensitizers

Abstract

Dye-sensitized solar cells (DSCs) have proven to be one of the best photovoltaic approaches for harnessing indoor/artificial light. Herein, we report two new molecularly engineered, cost-effective, metal-free, carbazole-based D–π–A sensitizers (YK 8 and YK 9) by judiciously varying their π-spacers, which are suitable for indoor photovoltaic applications. Using YK 8, we achieved an efficiency of 28.7% under standard 1000 lux Osram 14 W T2 cool day light fluorescent tube illumination with a power output of 68.88 μW cm−2 and 30.24% with a power output of 108.85 μW cm−2 under a higher illumination intensity of 1500 lux without co-sensitizers using iodide/triiodide electrolyte. With a small footprint/active area of 1.24 cm2, we could power a temperature sensor completely autonomously at a low light intensity of 500 lux, displaying the potential of these indoor photovoltaic devices to serve as energy sources for low-power sensors and actuators on the Internet of Things (IoT) network, reducing the dependence on batteries and leading to a smaller carbon footprint. The role of the π-spacer and its influence on recombination and device performance were explored via extensive interfacial studies.

Graphical abstract: Indoor light-harvesting dye-sensitized solar cells surpassing 30% efficiency without co-sensitizers

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2021
Accepted
05 Oct 2021
First published
05 Oct 2021
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2021,2, 7773-7787

Indoor light-harvesting dye-sensitized solar cells surpassing 30% efficiency without co-sensitizers

R. Haridas, J. Velore, S. C. Pradhan, A. Vindhyasarumi, K. Yoosaf, S. Soman, K. N. N. Unni and A. Ajayaghosh, Mater. Adv., 2021, 2, 7773 DOI: 10.1039/D1MA00829C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements