Issue 15, 2021

Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes

Abstract

Submicron-precision particle characterization is crucial for counting, sizing and identifying a variety of biological particles, such as bacteria and apoptotic bodies. Microfluidic impedance cytometry has been attractive in current research for microparticle characterization due to its advantages of label-free detection, ease of miniaturization and affordability. However, conventional electrode configurations of three electrodes and floating electrodes have not yet demonstrated the capability of probing submicron particles or microparticles with a submicron size difference. In this study, we present a label-free high-throughput (∼800 particles per second) impedance-based microfluidic flow cytometry system integrated with a novel design of a double differential electrode configuration, enabling submicron particle detection (down to 0.4 μm) with a minimum size resolution of 200 nm. The signal-to-noise ratio has been boosted from 13.98 dB to 32.64 dB compared to a typical three-electrode configuration. With the proposed microfluidic impedance cytometry, we have shown results of sizing microparticles that accurately correlate with manufacturers' datasheets (R2 = 0.99938). It also shows that population ratios of differently sized beads in mixture samples are consistent with the results given by commercial fluorescence-based flow cytometry (within ∼1% difference). This work provides a label-free approach with submicron precision for sizing and counting microscale and submicron particles, and a new avenue of designing electrode configurations with a feature of suppressing the electrical noise for accomplishing a high signal-to-noise ratio in a wide range of frequencies. This novel double differential impedance sensing system paves a new pathway for real-time analysis and accurate particle screening in pathological and pharmacological research.

Graphical abstract: Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2021
Accepted
26 Jun 2021
First published
28 Jun 2021

Lab Chip, 2021,21, 2869-2880

Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes

J. Zhong, M. Liang and Y. Ai, Lab Chip, 2021, 21, 2869 DOI: 10.1039/D1LC00481F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements