Issue 6, 2021

Tunnel dielectrophoresis for ultra-high precision size-based cell separation

Abstract

In molecular and cellular biological research, cell isolation and sorting are required for accurate investigation of cell populations of specific physical or biological characteristics. By employing unique cell properties to distinguish between heterogeneous cell populations, rapid and accurate sorting with high efficiency is possible. Dielectrophoresis-based cell manipulation has significant promise for separation of cells based on their physical properties and is used in diverse areas ranging from cellular diagnostics to therapeutic applications. In this study, we present a microfluidic device that can achieve label-free and size-based cell separation with high size differential resolution from a mono-cellular population or complex sample matrices. It was realized by using the tunnel dielectrophoresis (TDEP) technique to manipulate the spatial position of individual cells three dimensionally with high resolution. Cells were processed in high speed flows in high ionic strength buffers. A mixture of different sizes of polystyrene micro-particles with a size difference as small as 1 μm can be separated with high purity (>90%). For the first time, high-pass, low-pass, and band-pass filtering within a mono-cellular mammalian cell population were demonstrated with a tunable bandwidth as small as 3 μm. In addition, leukocyte subtype separation was demonstrated by sorting monocytes out of peripheral blood mononuclear cells (PBMCs) from whole blood with high purity (>85%). Its ability to deliver real-time adjustable cut-off threshold size-based cell sorting and its capability to provide an arbitrary cell size pick-up band could potentially enable many research and clinical applications.

Graphical abstract: Tunnel dielectrophoresis for ultra-high precision size-based cell separation

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2020
Accepted
23 Nov 2020
First published
07 Dec 2020

Lab Chip, 2021,21, 1049-1060

Author version available

Tunnel dielectrophoresis for ultra-high precision size-based cell separation

Y. Kung, K. R. Niazi and P. Chiou, Lab Chip, 2021, 21, 1049 DOI: 10.1039/D0LC00853B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements