Jump to main content
Jump to site search

Issue 12, 2021
Previous Article Next Article

A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

Author affiliations

Abstract

Cellulose acetate is one of the most important cellulose derivatives and commercially mainly produced using the Acetic Acid Process, in which overstoichiometric amounts of acetic anhydride and concentrated acetic acid are used to obtain cellulose triacetate. A subsequent partial hydrolysis is necessary to achieve evenly substituted cellulose acetates with lower degrees of substitution. Homogeneous acetylations in ionic liquids or other cellulose dissolving solvent systems often offer milder conditions and the possibility of a one-step synthesis of cellulose acetates with lower degrees of substitution by simply adjusting the equivalents of the acetylation agent. Here, we show an efficient homogeneous cellulose acetylation process without the need of any additional catalyst or activation step using the DBU/CO2 switchable solvent system. Vinyl acetate was used as a more benign acetylation agent under mild conditions and straightforward recyclability of all employed components was demonstrated with high recycling ratios (87.0–98.9%). Less cellulose backbone degradation compared to a cellulose acetate sample synthesized by the Acetic Acid Process from the same cellulose source was shown by size exclusion chromatography (Mn = 35 kDa vs. 12 kDa), which resulted in improved mechanical properties of solvent casted foils. Other homogeneous procedures reported so far (e.g. in ionic liquids) reached lower degrees of substitution, needed additional catalysts, proved to be less advantageous in terms of recycling, or required more reactive acetylation agents. Our results thus demonstrate a cellulose acetylation method with full focus on sustainability, efficiency, and applicability, resulting in an E-factor of 1.92 for the overall process.

Graphical abstract: A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

Back to tab navigation

Supplementary files

Article information


Submitted
29 Apr 2021
Accepted
16 May 2021
First published
18 May 2021

This article is Open Access

Green Chem., 2021,23, 4410-4420
Article type
Paper

A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

J. Wolfs and M. A. R. Meier, Green Chem., 2021, 23, 4410
DOI: 10.1039/D1GC01508G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements