Construction and characterization of Juglans regia L. polyphenols nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides, and their gastrointestinal digestion and colonic fermentation in vitro
Abstract
Herein, we report the construction and characterization of nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides for the delivery of polyphenols isolated from the shells of Juglans regia L. (BSA-JRP-HSP NPs). We also systematically investigated their gastrointestinal digestion and colonic fermentation characteristics in vitro. BSA-JRP-HSP NPs, with amorphous properties and regular spherical morphological features, have a high encapsulation efficiency of 88.47 ± 0.04%, average particle size of 285.7 ± 3.1 nm, and zeta potential of −12.20 ± 0.61 mV, and they exhibit excellent photothermal stabilities and strong mucin adhesion capacity. Through measurements of gastrointestinal digestion and colonic fermentation in vitro, the results suggest that BSA-JRP-HSP NPs presented well-sustained release characteristics for preventing the biodegradation of JRP during gastrointestinal digestion. After gastrointestinal digestion, BSA-JRP-HSP NPs could modulate the composition and structure of gut microbiota, promoting the growth of beneficial bacterial (e.g. Prevotella, Dialister, Akkermansia, etc.) and inhibiting the growth of pathogenic bacteria (e.g. Bacteroides, Phascolarctobacterium, Lachnospiracea incertae sedis, etc.). The production of short-chain fatty acids (SCFAs) including acetic acid, propionic acid, and butyric acid was remarkably enhanced by treatment with BSA-JRP-HSP NPs. This study has proved that BSA-JRP-HSP NPs can serve as a novel candidate for improving the bioavailability of JRP.