Issue 20, 2021

Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation

Abstract

Recent studies have reported that highland barley as a whole grain diet has anti-hyperglycemic effects, however little information is available about the active compounds that ameliorate pancreatic β-cell dysfunction and the related mechanisms. In this study, chlorogenic acid (CA) and β-glucan (BG) were identified as the active compounds that ameliorated β-cell dysfunction. CA ameliorated β-cell dysfunction by inhibiting cell apoptosis and improving glucose-stimulated insulin secretion via targeting G protein-coupled receptor 40 (GPR40) and regulating the phospholipase C β (PLCβ) pathway. BG ameliorated β-cell dysfunction by improving cell proliferation via targeting mammalian target of rapamycin (mTOR) and regulating the protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway. Furthermore, CA and BG improved β-cell sensitivity and pancreatic insulin secretion, and inhibited β-cell apoptosis in impaired glucose tolerance (IGT) mice. Notably, CA restored homeostasis model assessment (HOMA)-β values and Ca2+-ATP and K+-ATP levels back to normal levels, and BG at 300 mg per kg BW restored β-cell insulin contents back to normal levels in IGT mice. Additionally, the combination of CA and BG had an additive effect on ameliorating β-cell dysfunction. These results help develop whole highland barley grain as a functional food for preventing type 2 diabetes by ameliorating pancreatic β-cell damage.

Graphical abstract: Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation

Article information

Article type
Paper
Submitted
17 May 2021
Accepted
29 Aug 2021
First published
02 Sep 2021

Food Funct., 2021,12, 10040-10052

Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation

Z. Liu and B. Li, Food Funct., 2021, 12, 10040 DOI: 10.1039/D1FO01532J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements