Issue 48, 2021

Impact of oxygen content on preferred localization of p- and n-type carriers in La0.5Sr0.5Fe1−xMnxO3−δ

Abstract

The oxygen content in La0.5Sr0.5Fe1−xMnxO3−δ, measured by coulometric titration in a wide range of oxygen partial pressure at various temperatures, was used for defect chemistry analysis. The obtained data were well approximated by a model assuming defect formation in La0.5Sr0.5Fe1−xMnxO3−δvia Fe3+ and Mn3+ oxidation reactions and charge disproportionation on Fe3+ and Mn3+ ions. The partial molar enthalpy and entropy of oxygen in La0.5Sr0.5Fe1−xMnxO3−δ obtained by statistical thermodynamic calculations were found to be in satisfactory agreement with those obtained using the Gibbs–Helmholtz equations, thus further confirming the adequacy of the model. The impact of manganese substitution on defect equilibrium in La0.5Sr0.5Fe1−xMnxO3−δ was shown to be attributed to a lower enthalpy of Mn3+ oxidation reaction (Image ID:d1dt03628a-t1.gifvs.Image ID:d1dt03628a-t2.gif for the oxidation of Fe3+) and the charge disproportionation reaction on Mn3+ (Image ID:d1dt03628a-t3.gifvs.Image ID:d1dt03628a-t4.gif for that on Fe3+). The former makes Mn4+ ions more resistant to reduction than Fe4+. The latter favors the presence of Mn2+, Mn3+, and Mn4+ ions in oxides in comparable concentrations. The distribution of charge carriers over iron and manganese ions was determined as a function of oxygen content in La0.5Sr0.5Fe1−xMnxO3−δ.

Graphical abstract: Impact of oxygen content on preferred localization of p- and n-type carriers in La0.5Sr0.5Fe1−xMnxO3−δ

Article information

Article type
Paper
Submitted
26 Oct 2021
Accepted
29 Nov 2021
First published
29 Nov 2021

Dalton Trans., 2021,50, 17967-17980

Impact of oxygen content on preferred localization of p- and n-type carriers in La0.5Sr0.5Fe1−xMnxO3−δ

S. S. Nikitin, A. A. Markov, O. V. Merkulov, A. V. Chukin and M. V. Patrakeev, Dalton Trans., 2021, 50, 17967 DOI: 10.1039/D1DT03628A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements