Issue 42, 2021

The modulation effect of carboxylic acid ligands on the electron transfer photochromism of NDI-derived coordination polymers

Abstract

Four naphthalene diimide (NDI)-derived coordination polymers (CPs), [Cd(3-DPNDI)(o-BDC)] (1), [Cd(3-DPNDI)2(p-BDC)(NO3)] (2), [Cd(3-DPNDI)(NDC)(H2O)2] (3), [Cd(3-DPNDI)(BPC)(H2O)] (4) (3-DPNDI = N,N’-di-(3-pyridyl)-1,4,5,8-naphthalene diimide, o-BDC = phthalic acid, p-BDC = terephthalic acid, NDC = 2,6-naphthalenedicarboxylic acid, BPC = biphenyl-4,4′-dicarboxylic acid), have been designed and prepared. The usage of carboxylic acid ligands with different sizes, shapes and charge densities leads to the distinct resultant architectures of four CPs and divergent weak interactions (lone pair⋯π, π⋯π and C–H⋯π interactions) of electron donors/acceptors, which further lead to the completely different photoinduced electron transfer (PET) and consequent photochromic properties. More specifically, 1 and 2 display excellent photochromic behaviors with a fast photoresponsive rate and high coloration contrast, which are attributed to the suitable interfacial contacts of electron donors/acceptors. However, 3 and 4 are basically optical inert, which could be attributed to the negative effect of the stronger charge transfer (CT) on PET. The present study illustrates the delicate modulating effect of carboxylic acid ligands on the resultant networks, interfacial relationship and PET together with photoresponsive behaviors.

Graphical abstract: The modulation effect of carboxylic acid ligands on the electron transfer photochromism of NDI-derived coordination polymers

Supplementary files

Article information

Article type
Paper
Submitted
15 Jul 2021
Accepted
14 Sep 2021
First published
15 Sep 2021

Dalton Trans., 2021,50, 15153-15161

The modulation effect of carboxylic acid ligands on the electron transfer photochromism of NDI-derived coordination polymers

G. Li, H. Zhu, P. Hao, J. Shen and Y. Fu, Dalton Trans., 2021, 50, 15153 DOI: 10.1039/D1DT02358F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements