Issue 33, 2021

Multifunctional Zn–Ln (Ln = Eu and Tb) heterometallic metal–organic frameworks with highly efficient I2 capture, dye adsorption, luminescence sensing and white-light emission

Abstract

A new family of isostructural 3d–4f heterometallic metal–organic frameworks (HMOFs), [Zn3EuxTb2−x(TZI)4(DMA)5(H2O)3]·4DMA [x = 0 (1), 0.3 (2), 0.6 (3), 0.9 (4), 1 (5), 1.2 (6), 1.5 (7), 1.8 (8), 2 (9)], has been synthesized using the 5-(4-(tetrazol-5-yl) phenyl)isophthalic acid (H3TZI) ligand, LnIII ions and ZnII ions under solvothermal conditions. All HMOFs exhibit a (3,3,4,5,5)-connected 63·63(42·62·82)(4·65·8)(4·66·83) topology, which features three different types of motifs: one is a mononuclear ZnII ion and the other two motifs are binuclear [Zn(COO)3Ln] clusters. The adsorption experiments indicate that Zn3Tb2 (1) could efficiently remove almost all I2 from cyclohexane solution after 12 h and also showed better adsorption towards neutral red (NR) dye (adsorption: only the Zn3Tb2 (1) was taken as one representative). Simultaneously, the luminescence sensing showed that Zn3Tb2 (1) and Zn3Eu2 (9) have excellent response and sensitivity towards pollutants such as Fe3+ ions and 2,4,6-trinitrophenol (TNP) with high selectivity and a fairly low limit of detection through luminescence quenching effect. Moreover, seven trimetallic-doped HMOFs 2–8 analogues of Zn3Ln2 (single) HMOFs were designed and prepared, showing different changes of luminescent color. More interestingly, Zn3Eu1.5Tb0.5 (7) with white-light emission was fabricated by doping relative concentrations of Eu3+ and Tb3+ ions. To the best of our knowledge, Zn3Eu1.5Tb0.5 (7) represents a novel kind of heterometallic Zn3Ln2 HMOFs with white-light emission. It could be deduced that the excellent characteristics, namely strong typical luminescence emission of ZnII and LnIII ions, microporous channels, active open metal sites (tetra-coordinated ZnII–metal sites), and uncoordinated carboxylate O atoms and uncoordinated tetrazolate N atoms, made the above HMOFs an ideal platform for adsorption, luminescence sensing, and white-light emission. More significantly, these HMOFs are the first reported Zn–Ln heterometallic materials with the H3TZI ligand.

Graphical abstract: Multifunctional Zn–Ln (Ln = Eu and Tb) heterometallic metal–organic frameworks with highly efficient I2 capture, dye adsorption, luminescence sensing and white-light emission

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2021
Accepted
21 Jul 2021
First published
23 Jul 2021

Dalton Trans., 2021,50, 11619-11630

Multifunctional Zn–Ln (Ln = Eu and Tb) heterometallic metal–organic frameworks with highly efficient I2 capture, dye adsorption, luminescence sensing and white-light emission

W. Gao, H. Wei, C. Wang, J. Liu and X. Zhang, Dalton Trans., 2021, 50, 11619 DOI: 10.1039/D1DT01968F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements