Issue 34, 2021

Synergy of DNA intercalation and catalytic activity of a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity

Abstract

Improving the binding of metal complexes to DNA to boost cancer cell cytotoxicity requires fine tuning of their structural and chemical properties. Copper has been used as a metal center in compounds containing intercalating ligands due to its ability to catalytically generate reactive oxygen species (ROS), such as hydroxyl radicals (OH˙). We envision the synergy of DNA binding and ROS generation in proximity to target DNA as a powerful chemotherapy treatment. Here, we explore the use of [Cu(2CP-Bz-SMe)]2+ (2CP-Bz-SMe = 1,3-bis(1,10-phenanthrolin-2-yloxy)-N-(4-(methylthio)benzylidene)propan-2-amine) for this purpose by characterizing its cytotoxicity, DNA binding, and ability to affect DNA replication through the polymerase chain reaction – PCR and nuclease assays. We determined the binding (Kb) and Stern–Volmer constants (KSV) for complex-DNA association of 5.8 ± 0.14 × 104 and 1.64 (±0.08), respectively, through absorption titration and competitive fluorescence experiments. These values were superior to those of other Cu-complex intercalators. We hypothesize that the distorted trigonal bipyramidal geometry of [Cu(2CP-Bz-SMe)]2+ allows the phenanthroline fragments to be better accommodated into the DNA double helix. Moreover, the aromaticity of these fragments increases the local hydrophobicity thus increasing the affinity for the hydrophobic domains of DNA. Nuclease assays in the presence of common reducing agents ascorbic acid, nicotinamide adenine dinucleotide, and glutathione showed the effective degradation of DNA due to the in situ generation of OH˙. The [Cu(2CP-Bz-SMe)]2+ complex showed cytotoxicity against the following human cancer cells lines A549, MCF-7, MDA-MB-231 and MG-63 with half maximal inhibitory concentration (IC50) values of 4.62 ± 0.48, 5.20 ± 0.76, 5.70 ± 0.42 and 2.88 ± 0.66 μM, respectively. These low values of IC50, which are promising if compared to that of cisplatin, are ascribed to the synergistic effect of ROS generation with the intercalation ability into the DNA minor grooves and blocking DNA replication. This study introduces new principles for synergizing the chemical and structural properties of intercalation compounds for improved drug–DNA interactions targeting cancer.

Graphical abstract: Synergy of DNA intercalation and catalytic activity of a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity

Article information

Article type
Paper
Submitted
23 Apr 2021
Accepted
22 Jul 2021
First published
28 Jul 2021

Dalton Trans., 2021,50, 11931-11940

Synergy of DNA intercalation and catalytic activity of a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity

A. I. B. Romo, M. P. Carepo, P. Levín, O. R. Nascimento, D. E. Díaz, J. Rodríguez-López, I. E. León, L. F. Bezerra, L. Lemus and I. C. N. Diógenes, Dalton Trans., 2021, 50, 11931 DOI: 10.1039/D1DT01358K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements