KLa(0.95−x)GdxF4:Eu3+ hexagonal phase nanoparticles as luminescent probes for in vitro Huh-7 cancer cell imaging†
Abstract
A facile chemical route is reported for synthesizing red-emitting photoluminescent/MRI multi-functional KLa(0.95−x)GdxF4:Eu3+ (x = 0 to 0.4) bio-compatible nanomaterials for targeted in vitro tumor imaging. Hexagonal phase pure nanoparticles show a significant and systematic change in morphology with enhanced photoluminescence due to the substitution of La3+ with Gd3+ ions. Single phase β-KLa(0.95−x)GdxF4:Eu3+ exhibits multifunctional properties, both intense red emission and strong paramagnetism for high-contrast bioimaging applications. These silica capped magnetic/luminescent nanoparticles show long-term colloidal stability, optical transparency in water, strong red emission, and low cytotoxicity. The cellular uptake of coated nanoparticles was investigated in liver cancer cell line Huh-7. Our findings suggest that these nanoparticles can serve as highly luminescent imaging probes for in vitro applications with potential for in vivo and live cell imaging applications.

Please wait while we load your content...