Issue 16, 2021

Predicting an optimal oxide/metal catalytic interface for hydrodeoxygenation chemistry of biomass derivatives

Abstract

Complex reaction pathways such as hydrodeoxygenation (HDO) of multi-oxygenated reactants like furfuryl alcohol towards 2-methylfuran can benefit from a close connection between multi-component (oxide–metal) catalytic site properties and their catalytic performance. The HDO activity can be tuned by optimizing the synergy between the individual metal oxide and metal site properties towards the HDO catalytic cycle consisting of C–O activation, C–H formation, and oxygen vacancy formation steps. Through our previously reported model of an oxide–metal interface catalyst – a TiO2 nanorod on a Pd (111) surface, we identified the following material descriptors that dictate furfuryl alcohol HDO activity: work function (Φ), oxygen vacancy formation energy (ΔEvac), metal–carbon binding energy (M–CB.E.), and extent of metal–metal oxide interfacial charge transfer (q). The descriptors were examined over the interface with the composition altered towards closed pack metals: Ag, Au, Cu, Pd, Rh, Ru and Zn, and monolayer surfaces of Ag, Au, Co, Cu, Fe, Ir, Ni, Pt, Rh, Ru and Zn metals atop Pd (111). We identified a greater stabilization of the C–O activation transition state, the key HDO step, through electronic charge redistribution at the interface, facilitated by a higher metal work function. Stronger metal–carbon binding dictates the favorable hydrogenation of the resulting organic fragment. The role of these descriptors was further investigated under experimentally relevant hydrogenation reaction conditions of H2 and hydrocarbons partial pressures. Such fundamental knowledge of the descriptors dictating HDO can provide opportunities for further tuning the structural, electronic, and chemical properties of a multicomponent interface to achieve optimal HDO activity.

Graphical abstract: Predicting an optimal oxide/metal catalytic interface for hydrodeoxygenation chemistry of biomass derivatives

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2021
Accepted
12 Jul 2021
First published
12 Jul 2021

Catal. Sci. Technol., 2021,11, 5606-5618

Author version available

Predicting an optimal oxide/metal catalytic interface for hydrodeoxygenation chemistry of biomass derivatives

S. Deo and M. J. Janik, Catal. Sci. Technol., 2021, 11, 5606 DOI: 10.1039/D1CY00707F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements