Elastically flexible molecular crystals

Abstract

The discovery of molecular single crystals that display interesting elastic behaviour has generated excitement regarding their potential applications as it has upended the common perception of crystals as brittle objects. In order to design new functional materials based on molecular crystals, a comprehensive understanding of how these materials respond to deformation on a molecular-level is required. An introduction to the underlying mechanical theory and how it may be applied to single crystals is provided, along with a comprehensive discussion on how these mechanical properties can be characterised. While this field has already presented a large number of elastically flexible crystals, there is a lack of detailed mechanical characterisation data and some contention regarding the atomic-scale mechanism of elasticity. Due to the discrepancies and contradictions between theories proposed in the literature, it is not yet understood why some crystals are elastic while others shatter under applied force. To dispel ambiguity and guide future research, a set of criteria are proposed to define an elastically flexible crystal, so that these materials may find applications among future technologies.

Graphical abstract: Elastically flexible molecular crystals

Article information

Article type
Viewpoint
Submitted
18 May 2021
First published
16 Sep 2021

Chem. Soc. Rev., 2021, Advance Article

Elastically flexible molecular crystals

A. J. Thompson, A. I. Chamorro Orué, A. J. Nair, J. R. Price, J. McMurtrie and J. K. Clegg, Chem. Soc. Rev., 2021, Advance Article , DOI: 10.1039/D1CS00469G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements