Jump to main content
Jump to site search


2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement

Author affiliations

Abstract

Supramolecular self-assembly at surfaces provides a pathway for building chemically customized interfaces. Over the last three decades, research on the role of key parameters such as temperature, solute concentration, and molecular design has enabled a steady increase in the complexity of self-assembled molecular networks (SAMNs) that can thus be created. However, the structure and quality of SAMNs is often determined during the early stages of nucleation and growth. To study and influence self-assembly processes at this deterministic length scale, spatial confinement of molecular adsorbates to well-defined surface patterns with nanoscale lateral dimensions offers exciting possibilities. The aim of this tutorial review is to give an overview of the various ways in which confinement impacts SAMN formation, and how we can use that knowledge to direct assemblies towards desired structures. The possibility to exploit confinement for improved control over on-surface reactions is also contemplated.

Graphical abstract: 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement

Back to tab navigation

Article information


Submitted
19 Oct 2020
First published
09 Apr 2021

Chem. Soc. Rev., 2021, Advance Article
Article type
Tutorial Review

2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement

L. Verstraete and S. De Feyter, Chem. Soc. Rev., 2021, Advance Article , DOI: 10.1039/D0CS01338B

Social activity

Search articles by author

Spotlight

Advertisements